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Abstract: Titanium nitride is widely used in plasmonic applications, due to its robustness and
optical properties which resemble those of gold. Despite this interest, the nonlinear properties
have only recently begun to be investigated. In this work, beam deflection and non-degenerate
femtosecond pump-probe spectroscopy (800 nm pump and 650 nm probe) were used to measure
the real and imaginary transient nonlinear response of 30-nm-thick TiN films on sapphire and
fused silica in the metallic region governed by Fermi-smearing nonlinearities. In contrast to
other metals, it is found that TiN exhibits non-instantaneous positive refraction and reverse
saturable absorption whose relaxation is dominated by slow thermal diffusion into the substrate
lasting several hundred picoseconds. Ultrafast contributions arising from hot-electron excitations
are found to be a small part of the overall response, only appearing significant in the TiN on
fused silica at irradiance levels above 100 GW-cm−2. The modeling and origin of this response
is discussed, and TiN is found to be adept at achieving ultrafast (below 1 ps) lattice heating
which, combined with the robustness and low-cost of the material may prove useful in various
thermo-optical applications such as local heating, heat-assisted processes, and nanoscale heat
transfer.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

The study of nonlinear optical processes has been a hotbed for photonics research since the
invention of the laser, leading to the development of numerous technologically important devices
and systems for wavelength conversion, ultrafast control, and optical characterization [1,2].
Although the nonlinear optical properties of metals have also been studied for many years, there
has been a recent renewal of interest in metals due to their plasmonic properties and ability to
confine light down to subwavelength dimensions [3–5]. For example, both propagating and local
surface plasmons are extremely sensitive to changes in the complex permittivity of the metallic
layer and the surrounding environment, facilitating numerous applications in low-intensity optical
sensing or all-optical signal control [6–8]. Alternatively, plasmonic components can be used
to effectively confine light to extremely tight volumes where locally enhanced fields can result
in increased nonlinearities for polymers, quantum wells, glasses, or other dielectric nonlinear
materials [9–12]. However, the development of such devices has been limited by the softness
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of traditional plasmonic materials, melting point depression for nanostructures, and film creep
[13,14].

Recently, the development of alternative plasmonic materials has provided several candidates
that possess optical properties mimicking those of gold but are able to withstand temperatures
in excess of 2800 °C before melting. These so-called refractory plasmonic materials [14–17],
e.g. TiN, ZrN, HfN, and TaN, may provide a good solution for applications such as nonlinear
plasmonics [18], photothermal cancer therapy [19,20], water treatment [21], nanoparticle trapping
[22,23], or local chemical reaction control [24,25]. Recent works using a metal-insulator-metal
configuration have demonstrated hot-electron detectors with TiN exhibiting an order of magnitude
greater photocurrent than a similar device using Au [26,27]. Furthermore, TiN shows a greater
heating efficiency when compared to gold over most of the visible and near infrared spectrum
[28], useful for thermo-photovoltaic applications [14]. In nonlinear optics, metal films have been
shown to produce a large nonlinear index change [2,29] and facilitate harmonic generation [30].
More recently, the plasmonic effects of metals have been utilized to localize electric fields and
provide enhancement to other nonlinear materials such as polymers and quantum wells. However
the softness of many traditional metals remains a limitation under large optical intensities, and
the robustness of TiN combined with respectable plasmonic performance makes the material a
leading candidate [14]. Due to this interest, studies in TiN has demonstrated nonlinear frequency
conversion [17,31] while other efforts have studied the degenerate effective third-order nonlinear
optical properties of TiN thin films [32] although the temporal response of the effect is just
beginning to be studied for thick films and oxy-nitride layers [33,34].
In this work, we combine non-degenerate transient pump-probe and beam deflection experi-

ments to study the strength of the nonlinearities, their temporal dependence, and their origin. We
find that the response in TiN films under our experimental conditions exhibits a positive refraction
and reverse saturable absorption effect, dominated by a large (90% of signal) decay lasting several
hundred picoseconds, while exhibiting a weak (10%) ultrafast contribution. This is in stark
contrast to many other metallic films (e.g. gold, silver) which exhibit negative refraction and
saturable absorption with strong ultrafast (<10 ps) nonlinear transients. Utilizing a dual-parabolic
two-step model to identify both the electron and lattice temperature decays, we compare the
origins of these effects to the most optically similar material, gold.

Fig. 1. a) SEM image of the high-quality TiN surface illustrating a smooth, well-ordered
cubic grains. b) SEM image of the low-quality TiN surface illustrating randomly oriented
cubic grains. Linear permittivity of the TiN samples.
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2. Results

2.1. Titanium nitride samples

Two 30 nm thick TiN samples were studied in this work, a film grown at 800 °C on c-sapphire
and a film grown at 350 °C on fused silica (see Appendix A). To illustrate the differences between
the samples, the surface structure of the TiN was imaged via scanning electron microscope.
For the sapphire-based film, referred to as the “high-quality sample”, a smooth surface with
well-ordered grains is found, which is expected for a textured epitaxial film (see Fig. 1a) [35,36].
Conversely, for the fused silica-based film, referred to as the “low-quality sample”, a randomized
grain orientation is observed, which a consequence of polycrystalline nature of the sample (see
Fig. 1(b)).

2.2. Optical measurements

Fig. 2. Beam deflection measurements of the a) beam displacement and b) total power
transmitted for high-quality TiN on fused sapphire at 800° C and the measurements of the c)
beam displacement and d) total power transmitted for low-quality TiN on fused silica at 350°
C. Note that the red and blue signal traces are shifted (2% in panels a, c, d and 0.5% in b) in
order to facilitate visibility. Circles represent experimental data and solid lines represent
numerical fitting. Pump excitation is centered at time zero.
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To study the nonlinearities in TiN, we use a combination of the beam deflection method [37]
and time-resolved differential transmission (TRDT). Beam deflection provides a powerful method
for determining the amplitude of the nonlinear response, while the TRDT measurements enable
direct comparison of the hot electron dynamics with that of traditional metal films, which has a
substantial literature. The beam deflection measurements were performed using a Ti:sapphire
laser operating at a 1 kHz repetition rate where the pump pulse was set to 800 nm (∼40 fs) and
the probe pulse was set to 650 nm (110 fs) with parallel polarization (see Appendix B.1. for
details). The results of the beam deflection measurements for the two TiN samples are shown
in Fig. 2 and a summary of the extracted nonlinear coefficients is shown in Table 1, obtained
using the procedure as described by M. Ferdinandus et al. [38], (further details provided in
Appendix B.2.). Considering these results, two key points are readily apparent: 1) the samples
exhibit positive nonlinear refraction and reverse saturable absorption; 2) the response of both
films is dominated by a slow relaxation mechanism lasting much longer than 5 ps although a small
ultrafast (< 2 ps) contribution is observed in the low-quality film, Figs. 2(c) and 2(d). These two
observations stand in contrast to other metallic films, such as gold [29,39,40], which exhibit a
Fermi-smearing nonlinear effect in their metallic regions due to free-carrier absorption, giving
rise to a strong ultrafast transient with negative refraction and saturable absorption [41]. We do
note in the high-quality film deflection, Fig. 2(a), a sharp peak near time zero is observed only in
the deflection measurement. Although this feature is repeatable, its temporal width is limited by
the pump-probe cross-correlation and is strongly reduced under cross-polarized experiments,
suggesting an ultrafast effect that is likely a residual signal from the substrate.

Table 1. Nonlinear Coefficients from Beam Deflection

Mechanism 1 Mechanism 2

Sample n2,eff [m2-W−1] α2 [m-W−1] τf [ps] n2,eff [m2-W−1] α2 [m-W−1] τr [ps]

High-Quality TiN - - - 4.7 × 10−13 2.15 × 10−7 38.0

Low-Quality TiN 2.2 × 10−15 2.8 × 10−9 1 8.5 × 10−13 1.3 × 10−6 97.4

Extracted nonlinear coefficients, n2,eff , α2 and characteristic times, for the two TiN films under test where mechanism
1 represents an ultrafast transient while mechanism 2 represents a long-lived response. Definitions of the nonlinear
coefficients are taken as described in [57] and detailed in appendix.

To observe the transient on longer time scales, a TRDT experiment was used as this technique
is less sensitive to small pump-probe alignment deviations, which occur over long delay stage
travel distances. In this setup, the pump wavelength was again set to 800 nm (∼150 fs) and
the probe to 650 nm (∼200 fs) with a repetition rate of 250 kHz. The relative transmission
change of the two films is shown in Fig. 3 for short and long-time scales, where the transmission
results from beam deflection have been overlaid for comparison. The TRDT response at early
times matches well with the transmission results of beam deflection and the response of the
samples appear similar. However, on a longer time scale the difference between the samples
becomes more apparent, although both samples exhibit a measurable residual transmission for
times beyond 1 ns.

2.3. Experimental analysis

To identify the origins of the decay dynamics in the TiN samples, we consider that at both the
pump (800 nm) and probe (650 nm) wavelengths, the dominant optical absorption mechanism
is free-carrier absorption, as both wavelengths are well below the valence-to-conduction band
transition energy (∼5-7 eV) [42,43]. In this case, we might expect the absorption of pump
photons to produce hot electrons that relax on the order of a few picoseconds. In normal metals
this behavior is typically described with a two-temperature model (TTM) [44–48] where the
lattice temperature is usually not seen as playing a role within this initial time frame and is used
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Fig. 3. a) Comparison of the normalized beam deflection and time-resolved differential
transmission (TRDT) measurements for the high-quality sample (red) and low-quality sample
(blue) on a short time scale, showing excellent agreement. Data was normalized by dividing
by the absolute value of the peak change in transmission. b) Change in transmission over
long time scales using TRDT. All data in panel a) were normalized.

to explain a small long-lived offset in TRDT data. However, this assumption relies on two key
points: 1) the temperature change of the electron population is much larger than the lattice (Tfilm
≈ Te) in the temporal region of interest and 2) the rise time of the lattice temperature is long
compared to the pulse width such that there are two clear relaxation regimes, see example for
gold in Fig. 7 [47–49]. TiN’s response is clearly quite different.
The abrupt change is followed by a slow relaxation feature extending for 100’s of ps. In

contrast to the behavior of gold, in TiN fast and slow contributions appear to be much more
closely intertwined. This indicates that the lattice temperature, typically seen to produce merely
a small offset, is significantly contributing to the optical response. This was verified by finite
element simulations of the thermal decay in the TiN films, where an excellent match to the decay
beyond 10 ps was found for both films assuming constant TiN thermal properties and varying
thermal properties for the sapphire and fused silica substrates (details presented in Appendix D
For times less than 10 ps, hot-electron effects are not considered in the simulation and can lead to
a deviation in the response.

Under these conditions, the standard TTM would not be sufficient to model the TiN films as a
decay of the lattice temperature must be included. An adequate description can be achieved by
moving to a Dual-Parabolic Two-Step (DPTS) model [50,51]:

Ce(Te)
∂Te

∂t
= ∇[κe ∇Te] − G(Te − Tl) + S(z, t) (1)

Cl(Tl)
∂Tl

∂t
= ∇[κl ∇Tl] + G(Te − Tl) (2)

which includes the lattice relaxation, and allows the overall temperature of the film to be
represented as a linear combination of the lattice and electron temperatures (∆T = A∆Te+B∆Tl )
[44,52]. More information on this model can be found in Appendix D. To support the model, the
electron-phonon coupling coefficient (G) was estimated to be on the order of 1018 W-K−1-m−3

using the approximation introduced by Allen, et al. [53] and constants from literature (Appendix C
Using the DPTS and allowing the G parameter to vary, reasonably accurate fits with the entire
high-quality TiN experimental data set can be obtained (Fig. 4), taking G ≈ 0.7×1017 W-K−1-m−3

which is approximately 2-orders of magnitude larger than gold [54]. Using similar fitting
parameters, the model was also able to qualitatively fit the low-quality TiN films save for a
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constant mismatch in the temperature relaxation at long times. This offset is believed to be due to
the thermal conductivity of the low-quality TiN that differs from the bulk, and/or a poor interface
conductance between the TiN/fused silica which is not present in the case of the more ideal
TiN on sapphire [55]. Improved fitting and modelling may be accomplished with more accurate
measurement of the fundamental properties of as-grown TiN films.

Fig. 4. Time-resolved differential transmission measurements for the high-quality film
modeled using the parabolic two step approach over a) the short time window and b) the
long-time window for different values of G. G is listed in units of W-K−1-m−3.

3. Discussion

Using the DPTS model, we can isolate the role of the hot-electron and lattice temperatures on the
nonlinear response. As a reference, we calculate the response of gold using values from literature
in Fig. 5, producing a response dominated by the hot-electron decay (see Appendix D.2).

Fig. 5. The temperature rise in gold (dashed lines) and the high-quality (HQ) TiN (solid
lines) for a 6 µJ-cm−2 pump pulse.

Similarly, the high-quality TiN exhibits the typical rise in both electron and lattice temperatures,
yet they equilibrate in less than one picosecond with a lattice temperature rise that is 6× larger than
in gold. The quick hot-electron decay can be attributed to a G parameter that is approximately 2
orders of magnitude larger than in gold [54], while the rise in the TiN lattice temperature can be
attributed to 3× more absorption, decreased reflectivity of the material and larger loss, combined
with a thermal conductivity that is an order of magnitude less. As a result, the slow thermal
decay is expected to be a much larger portion of the overall signal, and in our case is found to
produce a response comparable to the hot-electron response. Alternatively, in the low-quality
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sample, the reduced carrier density produces an electron heat capacity that is ∼2× lower than in
the high-quality sample, thereby producing a larger change in the refractive index for a given
optical irradiance (see Table 1). As a result, the ultrafast hot-electron response is found to be
more evident, especially at large irradiances, although the overall response is still found to be
dominated by the slow lattice decay.

It is important to note that unlike in gold and other high thermal conductivity films, the overall
transient response is not expected to be significantly altered by varying the thickness of the film
on insulating substrates. As the thermal properties of sapphire and TiN are extremely similar,
and the interface is known to have a good thermal conductance [55], this sample can approximate
the response of a bulk TiN slab. As a result, the slow relaxation should be carefully taken into
account when considering plasmonic applications of TiN.

4. Conclusion

The nonlinear optical response of plasmonic refractory TiN thin films were studied using a
combination of the beam-deflection method and TRDT. TiN films interrogated with a non-
degenerate pump at 800 nm and probe at 650 nm are observed to have positive nonlinear
refraction, reverse saturable absorption, a fast hot-electron decay, and a response dominated
by a prolonged lattice thermal relaxation. Although atypical for conductive metallic films, this
combination of behaviors is particularly useful in two key application areas: 1) local heating, 2)
nonlinear enhancement. For applications in local heating, such as photothermal cancer therapy,
water treatment, nanoparticle trapping, or local chemical reaction control, the rapid and efficient
transfer of energy from the electrons to the lattice is beneficial to produce a nearly instant rise in
the temperature and allows a higher peak value to be achieved. For nonlinear enhancement, the
primary goal of the metallic component is to localize the electric field to drive a nearby nonlinear
material whose response is typically ultrafast (e.g. electronic polarization). When the metallic
component itself has an ultrafast effect, the response can pollute the overall signal, and the lack
of any such effect in TiN may be beneficial as it decouples the design of the plasmonic resonator
and nonlinear response. Furthermore, the large damage threshold of TiN and high melting
temperature, even when nanostructured, ensure that operation in harsh environments and under
peak irradiance levels exceeding 200 GW-cm−2 (55 fs) are possible. As a result, refractory TiN
is an especially promising material for thermo-plasmonic applications including those utilizing
intense ultrafast laser pulses.

Appendix A: TiN growth and linear characterization

The TiN films were fabricated using DC reactive magnetron sputtering in an argon/nitrogen
environment with 4 sccm of Ar and 6 sccm of N2 at a deposition pressure of 5 mTorr. A 30
nm thick TiN film was deposited on a 0.7 mm thick fused silica substrate at a low substrate
temperature of 350°C. A second 30 nm thick film was also deposited on a 0.5 mm thick sapphire
substrate at a high substrate temperature of 800°C.

Table 2. Summary of the Drude-Lorentz model parameters used to fit the spectroscopic
ellipsometry data for the two TiN films.

Sample ε∞ ADrude [eV2] BDrude [eV] A1 [eV2] B1 [eV] E1 [eV] A2 [eV2] B2 [eV] E2 [eV]

High-Quality TiN 5.2 49.2 0.2 5.7 1.6 2.0 24.1 1.0 3.5

Low-Quality TiN 3.3 25.6 0.8 4.5 0.9 1.0 39.5 2.5 3.5

The linear optical properties of both samples were studied using variable angle spectroscopic
ellipsometry and subsequent fitting with a Drude-Lorentz model in a manner similar to previous
reports [56]. The fitting parameters are shown in Table 2.
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Appendix B: Beam deflection measurement

B.1. Experimental set-up

Beam deflection measurements are performed as described by M. Ferdinandus et al. [37,38],
using a Ti:sapphire amplified system (KM Labs Wyvern 10-1000) producing 4.2 mJ, 55 fs
(FWHM) pulses at 800 nm operating at a 1 kHz repetition rate. The strong excitation pulse
is obtained by splitting ∼5 µJ of the fundamental with a beam splitter. An optical parametric
generator/amplifier (Light Conversion TOPAS-Prime) is pumped by the fundamental to generate
the 650 nm (second harmonic of signal), 110 fs probe pulse, which is then spatially filtered to
produce a Gaussian irradiance profile. The probe is focused to a spot size, wp, ∼3-5× smaller
than that of the excitation, we, both of which are determined by knife-edge scans. The probe is
displaced from the peak of the excitation to the maximized irradiance gradient at (1/2)we where
the probe experiences an induced refractive index, ∆n, gradient, causing it to be deflected by
a small angle, dΦ. The maximum index gradient is found by shifting the excitation until the
maximum deflection signal is achieved at zero temporal delay. The deflection signal is measured
using a quad-segmented Si photodiode (OSI QD50-0-SD) which simultaneously measures the
differential signal (∆E) and the total signal (Eo), each of which is detected by a lock-in amplifier
(Stanford Systems SR-830). A mechanical optical chopper (ThorLabs MC-2000) synchronized
with the excitation repetition rate is used to modulate the excitation at 286 Hz.

Since the TiN samples are on either silicon dioxide or sapphire substrates, the nonlinear
response of these materials must be removed from the measurement in order to isolate the effect
of the TiN film alone. To do so the samples were half coated with TiN while the other half was
left uncoated. First the coated half was measured, then the sample was translated laterally so
that the bare substrate could be measured without a realignment of the experimental system.
The signal from the substrate is then removed from the TiN raw data after being scaled based
on the transmissivity of the TiN. Small artifacts can remain in the signal if the substrate is not
highly uniform or if translating the sample causes it to move slightly in-line with the beam.
These artifacts will appear as peaks centered roughly at time zero which are limited by the
cross correlation of the pump and probe temporal profiles, indicating that they are due to an
instantaneous nonlinear response and not from the TiN film.

B.2. Determination of nonlinear coefficients

The nonlinear coefficients are defined as in the paper by M. Reichert et al [57] where the
total index change resulting from multiple nonlinear optical response mechanisms is given by
∆n = n2,elI[t] + ∫∞−∞ R[t − t′]I[t′]dt′ where the first term is the index change from the electronic
nonlinear index n2,el and I[t] is temporal profile of the irradiance. The second term is the
index change from the various non-instantaneous responses and is the convolution of the sum
of temporal response functions R[t] and I[t]. R[t] =

∑
m n2,mrm[t] where n2,m the coefficient

associated with a particular response function m and r[t] is the temporal profile of the nonlinear
response normalized so that ∫∞−∞ rm[t]dt = 1. For the case of TiN, the non-instantaneous decays
were modeled as a biexponential function r[t] = C

(
1 − Exp

[
− t
τr

] )
Exp

[
− t
τf

]
Θ[t] where C is

the normalization factor, τr is the rise time, τf is the fall time and Θ[t] is the Heaviside function
to ensure causality. In this case, the instantaneous electronic nonlinearity was set to zero during
the fitting as this feature was not observed in the TiN data.
Because the decay times are very long for this material, the normalization factor C ends up

being very small, which hence requires that n2 for these mechanisms be very large. Therefore,
the magnitudes of n2 for the various mechanisms range over several orders of magnitude, and
accounts for the wide range of magnitudes of the electronic and free-carrier nonlinearities.
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Appendix C: Estimation of electron-phonon coupling coefficient

Given the long-lasting thermal relaxation, we can determine that TiN possess either an extremely
weak electron phonon coupling such that hot-electrons are long lived, or that the coupling is
extremely fast such that the lattice is heated on a timescale similar to the pulse width which then
relaxes slowly. To determine the correct approach, the electron-phonon coupling coefficient
(G) was determined from constants reported in literature using the approximation introduced by
Allen, et al. [53]:

G =
3γλ 〈ω2〉

~πkB
(3)

where γ is the electron constant for the heat capacity, and λ is the Bardeen-Cooper-Schrieffer
electron phonon coupling constant from superconductor theory, and ω2 is the second moment of
the phonon spectrum, which can be estimated as ω2 ' (Θ∞)

2 [58]. Though these equations
were derived for superconductors, such as TiN, they have been successfully used to estimate the
G parameter at room temperature for non-superconductors such as gold, and the results have
been found to agree with measured values [52]. Subsequently, using values for TiN found in
literature (Table 3) an electron-phonon coupling coefficient on the order of 1018 W-K−1-m−3 is
predicted, illustrating that hot-electrons are short-lived in TiN and the lattice heats quickly.

Table 3. TiN Constants from Literature

Constant Value Reference

γ [mJ-mol−1-K−2] 2.5–3.6 [58,59]

λ 0.59–0.64 [60–63]

Θ∞ [K] [a] 487–518 [63]

〈ω2 〉 [J2] [b] 4.5×10−41˘5.1×10−41 calculated

G [W-K−1-m−3] 3.6×1018 – 6.5×1018 calculated

The second moment is calculated from the Debye values

Appendix D: Simulations

D.1 COMSOL simulations

To confirm the role of the lattice temperature, simulations of the thermal decay in TiN films on the
fused silica and sapphire substrates were completed using the finite element method (COMSOL
Multiphysics). An impulse injection of heat to the TiN lattice was taken at zero time, thereby
modelling an instantaneous transfer of optical energy from the heated Fermi-sea to the TiN (i.e.
G→ ∞). To compare the simulation with experiments we assume a constant thermal index
coefficient dñ

dT , such that the change in transmission is proportional to the change in temperature.
The simulation was configured to be 2-D axially symmetric with a 30 nm thick layer of TiN on
top of a 1 µm thick substrate. Both layers were considered to have a radius of 200 µm. The
central axis boundary condition was axial symmetry, while the bottom of the substrate and outer
edge of the sample were fixed to room temperature 293 K. The top surface of the TiN layer was
set to allow a heat flux. The energy (Qin(r,z)) deposited into the TiN layer was calculated based
on the energy absorbed within the TiN considering an incident Gaussian beam of width 50 µm.
The TiN was then set to have an initial temperature Tin(r,z)=Qin(r,z)/(CpρV), where ρ is the
density and V is the illuminated volume. The thermal and optical properties of the materials is
listed in Table 4. The temperature of the TiN layer is taken from a point at r= 0 precisely halfway
into the thickness of the TiN, and the temperature at this point in time is extracted.
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Fig. 6. Normalized lattice temperature as obtained from simulation, solid lines, (which is
proportional to the change in sample transmission) overlaid with the normalized experimental
transmission data, data points, versus time. This demonstrates that for times beyond 10 ps the
response is described by heat transfer between the TiN film and substrate. The experimental
data was normalized by dividing by the change in transmission at 10 ps (approximate time
where COMSOL becomes a valid estimate) while simulation was normalized by dividing
by peak rise in temperature. The simulation data was then inverted for comparison with
experimental data.

Table 4. Summary of Material Properties used in the Finite Element Simulations

Material κ [W-m−1-K−1] Cp [J-kg−1-K−1] ρ [kg-m−3] α [m−1]

TiN LQ 28 602 5210 3.76 × 107 *

TiN HQ 28 602 5210 5.48 × 107 *

Fused Silica 1 680 2650 -

Sapphire 25 880 3690 -

All values were taken from [65,66], except * values which were determined from experiments and the heat capacity of
TiN which was determined from [67].

The resulting temperature decay for the TiN samples are shown in Fig. 6, where an excellent
agreement is observed, confirming that the slow relaxation time in TiN is due to a thermal index
change, not a hot-electron decay. This conclusion is also supported by recent measurements
of the temperature dependent index in TiN films [64], where a positive dRe{ñ}

dT due to the
thermal expansion of the unit cell volume and a subsequent reduction in the free-electron density
along with a positive dIm{ñ}

dT due to increased phonon scattering is observed. As a result, the
relaxation time is limited by the rate of thermal dissipation and can be impacted by varying the
thermal properties of the TiN-substrate interface, the substrate conductivities of the substrate, the
TiN-substrate interface, and the thickness of the TiN layer.

D.2 Dual-parabolic two-step model

TiN exhibits a strong lattice contribution which is not well-described by the standard TTM. To
improve the capture of this response, the Dual-Parabolic Two-Step model [50,51] was used:

Ce(Te)
∂Te

∂t
= ∇[κe ∇Te] − G(Te − Tl) + S(z, t) (4)

Cl(Tl)
∂Tl

∂t
= ∇[κl ∇Tl] + G(Te − Tl) (5)
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Fig. 7. Electron and lattice temperatures of a thin gold film following a 6 µJ-cm−2 optical
pump at time zero, illustrating a typical ultrafast decay due to hot-electrons and long-lived
offset due to lattice heating.

In the traditional heat equation, the thermal conductivity is just a single value in one equation;
however, when trying to separate out the contributions from the electrons and the lattice, the
electrons provide the thermal conductivity and the lattice contributes < 1%. In our model,
κl = 0.0005 κbulk. Ce is a temperature dependent variable which has different equations for
different temperature regimes, however, this work stays in the linear regime:

Ce = γTe (6)

where γ, [J-m−3-K−2]is the electron contribution to the heat capacity.

Table 5. Summary of the Material Properties used in the Numerical Calculations

Material κ [W-m−1-K−1] Ce [J-m−3-K−1] Cl [J-m−3-K−1] ε’pump ε”pump

Gold 315 2.13× 104 2.50× 106 -24.06 1.51

TiN LQ 28 8.19× 104 3.13× 106 -3.63 6.93

TiN HQ 28 8.19× 104 3.13× 106 -11.71 4.91

The values of κ, γ, and Cl for gold were taken from [69] and [53]. The values for TiN were taken from [70], [59], and
[55]. The permittivites used to calculate the absorption, were taken from experimental data.

A PDEPE system was implemented in Matlab, with the substrate being included as a composite
wall. The values used for the substrates are the same as those in Table 5. The temperatures
were taken as the values at the front surface. Please refer to [68] for information on setting up a
PDEPE solver.
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